

Section 1. Filled-in kill sheet exercises – Gauge problem exercises

Gauge problem exercises are created from a pre-completed kill sheet containing all relevant volume and pressure calculations.

Each question is based on strokes, pump rate, drillpipe and casing gauge readings at a specific point in time during well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drillpipe pressures will only be relevant to the action if:

 The casing and/or drillpipe pressures given in the question are below the expected pressures.

or

 The casing and/or drillpipe pressures given in the question are 500 kPa or more above the expected pressures.

Section 2. Calculation formula

Abbreviation	Term
0.00981	constant factor
m^3	cubic metres
m³/m	cubic metres per metre
m³/min	cubic metres per minute
m³/stroke	cubic metres per stroke
BHP	bottomhole pressure
BOP	blowout preventer
m	metres
m/hr	metres per hour
m/min	metres per minute
LOT	leak-off test
MAASP	maximum allowable annular surface pressure
kg/m ³	kilogram per cubic metre
kPa	kilopascal (pressure)
kPa/m	kilopascal per metre
kPa/hr	kilopascal per hour
SICP	shut-in casing pressure
SIDPP	shut-in drillpipe pressure
SPM	strokes per minute
TVD	true vertical depth

1. Hydrostatic pressure (kPa)

2. Pressure gradient (kPa/m)

3. Fluid density (kg/m³)

hydrostatic pressure (kPa)
$$\div$$
 TVD (m) \div 0.00981

or

hydrostatic pressure (kPa)

4. Formation pressure (kPa)

hydrostatic pressure in drillstring (kPa) + SIDPP (kPa)

5. Pump output (m³/min)

pump displacement
$$(m^3/stroke) \times pump rate (SPM)$$

6. Equivalent circulating density (kg/m³)

fluid density (kg/m³) + (annular pressure loss (kPa)
$$\div$$
 TVD (m) \div 0.00981)

or

fluid density (kg/m³) +
$$\left(\frac{\text{annular pressure loss (kPa)}}{\text{TVD (m)} \times 0.00981}\right)$$

7. Fluid density (kg/m³) with trip margin (kPa) included

fluid density (kg/m
3
) + (trip margin (kPa) \div TVD (m) \div 0.00981)

or

fluid density (kg/m³) +
$$\left(\frac{\text{trip margin (kPa)}}{\text{TVD (m)} \times 0.00981}\right)$$

8. New pump pressure (kPa) with new pump rate (SPM) (approximate)

current pump pressure (kPa)
$$\times \left(\frac{\text{new pump rate (SPM)}}{\text{current pump rate (SPM)}}\right)^2$$

9. New pump pressure (kPa) with new fluid density (kg/m³) (approximate)

current pump pressure (kPa) ×
$$\left(\frac{\text{new fluid density (kg/m}^3)}{\text{current fluid density (kg/m}^3)}\right)$$

10. Maximum allowable fluid density (kg/m³)

LOT fluid density
$$(kg/m^3)$$
 + $(surface\ LOT\ pressure\ (kPa)\ \div\ casing\ shoe\ TVD\ (m)\ \div\ 0.00981)$ or LOT fluid density (kg/m^3) + $\left(\frac{surface\ LOT\ pressure\ (kPa)}{casing\ shoe\ TVD\ (m)\ \times\ 0.00981}\right)$

11. MAASP (kPa)

(maximum allowable fluid density (kg/m³) - current fluid density (kg/m³)) x casing shoe TVD (m) x 0.00981

12. Kill fluid density (kg/m³)

current fluid density
$$\left(\text{kg/m}^3 \right) + \left(\text{SIDPP}(\text{kPa}) \div \text{TVD} \left(\text{m} \right) \div 0.00981 \right)$$
 or current fluid density $\left(\text{kg/m}^3 \right) + \left(\frac{\text{SIDPP} \left(\text{kPa} \right)}{\text{TVD} \left(\text{m} \right) \times 0.00981} \right)$

13. Initial circulating pressure (kPa)

circulating pressure at kill rate (kPa) + SIDPP (kPa)

14. Final circulating pressure (kPa)

$$\left(\frac{\text{kill fluid density (kg/m}^3)}{\text{current fluid density (kg/m}^3)}\right) \times \text{circulating pressure at kill rate (kPa)}$$

15. Gas migration rate (m/hr)

rate of increase in surface pressure (kPa/hr) ÷ fluid density (kg/m³) ÷ 0.00981

or

rate of increase in surface pressure (kPa/hr)

fluid density (kg/m³) × 0.00981

Gas laws 16.

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1} \qquad V_1 = \frac{P_2 \times V_2}{P_1}$$

$$V_1 = \frac{P_2 \times V_2}{P_1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2}$$

$$V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Pressure drop per metre tripping dry pipe (kPa/m)

fluid density $(kg/m^3) \times 0.00981 \times metal displacement <math>(m^3/m)$ riser or casing capacity (m³/m) - metal displacement (m³/m)

Pressure drop per metre tripping wet pipe (kPa/m) 18.

fluid density $(kg/m^3) \times 0.00981 \times closed$ end displacement (m^3/m) riser or casing capacity (m³/m) - closed end displacement (m³/m)

Level drop pulling remaining collars out of well dry (m) 19.

length of collars (m) \times metal displacement (m³/m) riser or casing capacity (m³/m)

20. Level drop pulling remaining collars out of well wet (m)

length of collars (m) x closed end displacement (m3/m) riser or casing capacity (m³/m)

21. Length of tubulars to pull dry before overbalance is lost (m)

overbalance (kPa)
$$\times$$
 (riser or casing capacity (m³/m) - metal displacement (m³/m)) fluid gradient (kPa/m) \times metal displacement (m³/m)

or

overbalance (kPa)
$$\times$$
 (riser or casing capacity (m³/m) - metal displacement (m³/m)) fluid density (kg/m³) \times 0.00981 \times metal displacement (m³/m)

22. Length of tubulars to pull wet before overbalance is lost (m)

$$\frac{\text{overbalance (kPa)} \times \left(\text{riser or casing capacity } \left(\text{m}^3/\text{m}\right) - \text{closed end displacement } \left(\text{m}^3/\text{m}\right)\right)}{\text{fluid gradient (kPa/m)} \times \text{closed end displacement } \left(\text{m}^3/\text{m}\right)}$$

or

overbalance (kPa)
$$\times$$
 (riser or casing capacity (m³/m) - closed end displacement (m³/m)) fluid density (kg/m³) \times 0.00981 \times closed end displacement (m³/m)

23. Volume to bleed due to gas migration in a vertical well (m³)

working pressure to bleed (kPa)
$$\times \left(\frac{\text{annular capacity } \left(\text{m}^3/\text{m}\right)}{\text{pressure gradient } \left(\text{kPa/m}\right)}\right)$$
 or working pressure to bleed (kPa) $\times \left(\frac{\text{annular capacity } \left(\text{m}^3/\text{m}\right)}{\text{fluid density } \left(\text{kg/m}^3\right) \times 0.00981}\right)$

24. Slug volume for a given length of dry pipe (m³)

length of dry pipe (m)
$$\times$$
 pipe capacity (m³/m) \times current fluid density (kg/m³) slug density (kg/m³) - current fluid density (kg/m³)

25. Pit gain due to slug U-tubing (m³)

slug volume (m³) ×
$$\left(\frac{\text{slug density (kg/m}^3)}{\text{current fluid density (kg/m}^3)} - 1\right)$$

26. Riser margin (kg/m³)

$$\frac{\left(\left(\text{air gap (m) + water depth (m)}\right) \times \text{fluid density (kg/m}^3\right) - \left(\text{ water depth (m)} \times \text{ water density (kg/m}^3\right)\right)}{\text{TVD (m) - air gap (m) - water depth (m)}}$$

27. Hydrostatic pressure loss if casing float fails (kPa)

 $\frac{\text{fluid density (kg/m}^3) \times 0.00981 \times \text{casing capacity (m}^3\text{/m}) \times \text{unfilled casing height (m)}}{\text{casing capacity (m}^3\text{/m}) + \text{annular capacity (m}^3\text{/m})}$