

Section 1. Filled-in kill sheet exercises – Gauge problem exercises

Gauge problem exercises are created from a pre-completed kill sheet containing all relevant volume and pressure calculations.

Each question is based on strokes, pump rate, drillpipe and casing gauge readings at a specific point in time during well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drillpipe pressures will only be relevant to the action if:

• The casing and/or drillpipe pressures given in the question are below the expected pressures.

or

• The casing and/or drillpipe pressures given in the question are 5 bar or more above the expected pressures.

Abbreviation	Term
10.2	constant factor
1	litres
l/m	litres per metre
l/min	litre per minute
l/stroke	litres per stroke
BHP	bottomhole pressure
BOP	blowout preventer
m	metres
m/hr	metres per hour
m/min	metres per minute
LOT	leak-off test
MAASP	maximum allowable annular surface pressure
kg/l	kilogram per litre
bar	bar (pressure)
bar/m	bar per metre
bar/hr	bar per hour
SICP	shut-in casing pressure
SIDPP	shut-in drillpipe pressure
SPM	strokes per minute
TVD	true vertical depth

Section 2. Calculation formula

June 2023	EX-0037	Version 2.0	Page 1 of 5
		L	

1. Hydrostatic pressure (bar)

 $\frac{\text{fluid density (kg/l) × TVD(m)}}{10.2}$

2. Pressure gradient (bar/m)

fluid density (kg/l) 10.2

3. Fluid density (kg/l)

hydrostatic pressure (bar) ÷ TVD (m) × 10.2

or

 $\frac{\text{hydrostatic pressure (bar)} \times 10.2}{\text{TVD (m)}}$

4. Formation pressure (bar)

hydrostatic pressure in drillstring (bar) + SIDPP (bar)

5. Pump output (l/min)

pump displacement (I/stroke) × pump rate (SPM)

6. Equivalent circulating density (kg/l)

fluid density (kg/l) + (annular pressure loss (bar) \div TVD (m) × 10.2)

or

fluid density (kg/l) + $\left(\frac{\text{annular pressure loss (bar)} \times 10.2}{\text{TVD (m)}}\right)$

7. Fluid density (kg/l) with trip margin (bar) included

fluid density (kg/l) + (trip margin (bar) \div TVD (m) × 10.2) or fluid density (kg/l) + $\left(\frac{\text{trip margin (bar)} \times 10.2}{\text{TVD (m)}}\right)$

June 2023	EX-0037	Version 2.0	Page 2 of 5
			1

8. New pump pressure (bar) with new pump rate (SPM) (approximate)

current pump pressure (bar) × $\left(\frac{\text{new pump rate (SPM)}}{\text{current pump rate (SPM)}}\right)^2$

New pump pressure (bar) with new fluid density (kg/l) (approximate) 9.

current pump pressure (bar) × $\left(\frac{\text{new fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right)$

Maximum allowable fluid density (kg/l) 10.

LOT fluid density (kg/l) + (surface LOT pressure (bar) \div casing shoe TVD (m) × 10.2)

or

LOT fluid density (kg/l) + $\left(\frac{\text{surface LOT pressure (bar)} \times 10.2}{\text{casing shoe TVD (m)}}\right)$

11. MAASP (bar)

(maximum allowable fluid density (kg/l) - current fluid density (kg/l)) × casing shoe TVD (m) 10.2

12. Kill fluid density (kg/l)

current fluid density (kg/l) + (SIDPP (bar) \div TVD (m) × 10.2)

or

current fluid density (kg/l) + $\left(\frac{\text{SIDPP (bar)} \times 10.2}{\text{TVD (m)}}\right)$

Initial circulating pressure (bar) 13.

circulating pressure at kill rate (bar) + SIDPP (bar)

14. Final circulating pressure (bar)

 $\left(\frac{\text{kill fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right)$ × circulating pressure at kill rate (bar)

June 2023	EX-0037	Version 2.0	Page 3 of 5
	1		

15. Gas migration rate (m/hr)

rate of increase in surface pressure (bar/hr) \div fluid density (kg/l) × 10.2

or

 $\frac{\text{rate of increase in surface pressure (bar/hr)} \times 10.2}{\text{fluid density (kg/l)}}$

16. Gas laws

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1} \qquad \qquad V_1 = \frac{P_2 \times V_2}{P_1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2} \qquad \qquad V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Pressure drop per metre tripping dry pipe (bar/m)

 $\frac{\text{fluid density (kg/l)} \times \text{metal displacement (l/m)}}{(\text{riser or casing capacity (l/m)} - \text{metal displacement (l/m)}) \times 10.2}$

18. Pressure drop per metre tripping wet pipe (bar/m)

 $\frac{\text{fluid density (kg/l)} \times \text{closed end displacement (l/m)}}{(\text{riser or casing capacity (l/m)} - \text{closed end displacement (l/m)} \times 10.2}$

19. Level drop pulling remaining collars out of well dry (m)

length of collars (m) × metal displacement (l/m) riser or casing capacity (l/m)

20. Level drop pulling remaining collars out of well wet (m)

length of collars (m) × closed end displacement (l/m) riser or casing capacity (l/m)

June 2023	EX-0037	Version 2.0	Page 4 of 5

21. Length of tubulars to pull dry before overbalance is lost (m)

overbalance (bar) × (riser or casing capacity (l/m) - metal displacement (l/m)) fluid gradient (bar/m) × metal displacement (l/m)

or

overbalance (bar) × 10.2 × (riser or casing capacity (l/m) - metal displacement (l/m)) fluid density (kg/l) × metal displacement (l/m)

22. Length of tubulars to pull wet before overbalance is lost (m)

 $\frac{\text{overbalance (bar)} \times (\text{riser or casing capacity (I/m)} - \text{closed end displacement (I/m)})}{\text{fluid gradient (bar/m)} \times \text{closed end displacement (I/m)}}$

or

overbalance (bar) × 10.2 × (riser or casing capacity (l/m) - closed end displacement (l/m)) fluid density (kg/l) × closed end displacement (l/m)

23. Volume to bleed due to gas migration in a vertical well (I)

working pressure to bleed (bar) × $\left(\frac{\text{annular capacity (I/m)}}{\text{pressure gradient (bar/m)}}\right)$

or

working pressure to bleed (bar) $\times \left(\frac{an}{a}\right)$

$$\left(\frac{\text{annular capacity (I/m)} \times 10.2}{\text{fluid density (kg/l)}}\right)$$

24. Slug volume (I) for a given length of dry pipe

 length of dry pipe (m) × pipe capacity (l/m) × current fluid density (kg/l)

 slug density (kg/l) - current fluid density (kg/l)

25. Pit gain due to slug U-tubing (I)

slug volume (I) × $\left(\frac{\text{slug density (kg/l)}}{\text{current fluid density (kg/l)}} - 1\right)$

26. Riser margin (kg/l)

 $\frac{((\text{air gap }(m) + \text{water depth }(m)) \times \text{fluid density }(\text{kg/l}) - (\text{water depth }(m) \times \text{water density }(\text{kg/l}))}{\text{TVD }(m) - \text{air gap }(m) - \text{water depth }(m)}$

27. Hydrostatic pressure loss if casing float fails (bar)

fluid density (kg/l) \times casing capacity (l/m) \times unfilled casing height (m)

 $(\text{casing capacity (I/m)} + \text{annular capacity (I/m)}) \times 10.2$

	***************************************		******
June 2023	EX-0037	Version 2.0	Page 5 of 5
•	A		***************************************