Abbreviations

Abbreviation	Term
bar	bar (pressure)
bar/m	bar per metre
ID	inside diameter
in	inches
kg	kilogram
kg / l	kilogram per litre
l	litres
l / m	litres per metre
$\mathrm{l} / \mathrm{min}$	litres per minute
m	metres
MD	measured depth
OD	outside diameter
P	pressure
SICHP	shut-in casing head pressure
SITHP	shut-in tubing head pressure
TVD	true vertical depth
V	volume

Constant factors	
Constant factor pressure	10.2
Constant factor capacity (using inches)	1.9735

Formulas

1. Pressure gradient (bar/m)

fluid density (kg/l)
10.2
2. Fluid density (kg/l)
hydrostatic pressure (bar) $\times 10.2$ TVD (m)

3. Hydrostatic pressure (bar)

fluid density $(\mathrm{kg} / \mathrm{l}) \times$ TVD (m)
or
pressure gradient (bar/m) \times TVD (m)

4. Formation pressure (bar)

SITHP (bar) + hydrostatic column pressure to the top perforation (bar)

5. Kill weight gradient (bar/m)

(well fluid gradient (bar/m) \times TVD to point of circulation (m)) + SITHP (bar) + overbalance* (bar)
TVD to point of circulation (m)
*overbalance (at the point of circulation) is variable and will be stated
6. Tubing capacity (I / m)

$$
\frac{\text { tubing } \mathrm{ID}^{2}(\mathrm{in})}{1.9735}
$$

7. Annulus capacity ($1 / m$)

$$
\frac{\text { casing } \mathrm{ID}^{2}(\mathrm{in})-\text { tubing } \mathrm{OD}^{2}(\mathrm{in})}{1.9735}
$$

8. Volume (I)
capacity $(1 / m) \times \mathrm{MD}(\mathrm{m})$

9. Time to pump/displace (minutes)

$\frac{\text { capacity }(1 / \mathrm{m}) \times \mathrm{MD}(\mathrm{m})}{\text { pump rate }(1 / \mathrm{min})} \quad$ or $\frac{\text { volume }(\mathrm{I})}{\text { pump rate }(1 / \mathrm{min})}$

10. Area of a circle (in^{2})

$0.785 \times$ diameter 2 (in)

11. Force (kg force)

$6.58 \times$ area $\left(\mathrm{in}^{2}\right) \times$ applied pressure (bar)

12. New pump/circulating pressure (bar)

pump pressure (bar) $\times\left(\frac{\text { new pump rate }(1 / \mathrm{min})}{\text { old pump rate }(1 / \mathrm{min})}\right)^{2}$

13. Basic gas law

$P_{1} \times V_{1}=P_{2} \times V_{2}$
$P_{1}=\frac{\mathrm{P}_{2} \times \mathrm{V}_{2}}{\mathrm{~V}_{1}} \quad \mathrm{~V}_{1}=\frac{\mathrm{P}_{2} \times \mathrm{V}_{2}}{\mathrm{P}_{1}} \quad \mathrm{P}_{2}=\frac{\mathrm{P}_{1} \times \mathrm{V}_{1}}{\mathrm{~V}_{2}} \quad \mathrm{~V}_{2}=\frac{\mathrm{P}_{1} \times \mathrm{V}_{1}}{\mathrm{P}_{2}}$

