

Abbreviations

Abbreviation	Term
bar	bar (pressure)
bar/m	bar per metre
ID	inside diameter
in	inches
kg	kilogram
kg/l	kilogram per litre
I	litres
I/m	litres per metre
l/min	litres per minute
m	metres
MD	measured depth
OD	outside diameter
Р	pressure
SICHP	shut-in casing head pressure
SITHP	shut-in tubing head pressure
TVD	true vertical depth
V	volume

Constant factors		
Constant factor pressure	10.2	
Constant factor capacity (using inches)	1.9735	

Formulas

1. Pressure gradient (bar/m)

2. Fluid density (kg/l)

$$\frac{\text{hydrostatic pressure (bar)} \times 10.2}{\text{TVD (m)}}$$

3. Hydrostatic pressure (bar)

$$\frac{\text{fluid density (kg/l)} \times \text{TVD (m)}}{10.2}$$
or

pressure gradient (bar/m) x TVD (m)

4. Formation pressure (bar)

SITHP (bar) + hydrostatic column pressure to the top perforation (bar)

November 2022	EX-0041	Version 2.0	D4(O-1
			Page 1 of 2

5. Kill weight gradient (bar/m)

*overbalance (at the point of circulation) is variable and will be stated

6. Tubing capacity (I/m)

7. Annulus capacity (I/m)

8. Volume (I)

9. Time to pump/displace (minutes)

$$\frac{\text{capacity (I/m)} \times \text{MD (m)}}{\text{pump rate (I/min)}} \quad \text{or} \quad \frac{\text{volume (I)}}{\text{pump rate (I/min)}}$$

10. Area of a circle (in²)

$$0.785 \times diameter^2$$
 (in)

11. Force (kg force)

$$6.58 \times \text{area (in}^2) \times \text{applied pressure (bar)}$$

12. New pump/circulating pressure (bar)

pump pressure (bar)
$$\times \left(\frac{\text{new pump rate (l/min)}}{\text{old pump rate (l/min)}}\right)^2$$

13. Basic gas law

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1}$$
 $V_1 = \frac{P_2 \times V_2}{P_1}$ $P_2 = \frac{P_1 \times V_1}{V_2}$ $V_2 = \frac{P_1 \times V_1}{P_2}$