

Abbreviations

Abbreviation	Term	
bar	bar (pressure)	
bar/m	bar per metre	
ID	inside diameter	
in	inches	
kg	kilogram	
kg/l	kilogram per litre	
I	litres	
I/m	litres per metre	
l/min	litres per minute	
m	metres	
MD	measured depth	
OD	outside diameter	
Р	pressure	
SICHP	shut-in casing head pressure	
SITHP	shut-in tubing head pressure	
TVD	true vertical depth	
V	volume	

Constant factors		
Constant factor pressure	0.0981	
Constant factor capacity (using inches)	1.9735	

Formulas

1. Pressure gradient (bar/m)

fluid density (kg/l) \times 0.0981

2. Fluid density (kg/l)

hydrostatic pressure (bar) ÷ TVD (m) ÷ 0.0981

or

 $\frac{\text{hydrostatic pressure (bar)}}{\text{TVD (m)} \times 0.0981}$

3. Hydrostatic pressure (bar)

fluid density (kg/l) \times 0.0981 \times TVD (m) **or** pressure gradient (bar/m) \times TVD (m)

4. Formation pressure (bar)

SITHP (bar) + hydrostatic column pressure to the top perforation (bar)

Marianahan 0000	EV 0040	\/: 0.0	Dana 4 of 0
November 2022	EX-0040	Version 3.0	Page 1 of 2
	=/(00/0	1 0.0.0.	. ago . c

5. Kill weight gradient (bar/m)

(well fluid gradient (bar/m) × TVD to point of circulation (m)) + SITHP (bar) + overbalance* (bar)

TVD to point of circulation (m)

*Overbalance (at the point of circulation) is variable and will be stated

6. Tubing capacity (I/m)

7. Annulus capacity (I/m)

8. Volume (I)

capacity
$$(I/m) \times MD (m)$$

9. Time to pump/displace (minutes)

or

10. Area of a circle (in²)

$$0.785 \times diameter^2$$
 (in)

11. Force (kg force)

12. New pump/circulating pressure (bar)

pump pressure (bar)
$$\times \left(\frac{\text{new pump rate (I/min)}}{\text{old pump rate (I/min)}}\right)^2$$

13. Basic gas law

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1}$$
 $V_1 = \frac{P_2 \times V_2}{P_1}$ $P_2 = \frac{P_1 \times V_1}{V_2}$ $V_2 = \frac{P_1 \times V_1}{P_2}$