

Abbreviations

Abbreviation	Term		
bbl	barrels (US)		
bbl/ft	barrels (US) per foot		
bbl/min	barrels (US) per minute		
ft	feet		
ID	inside diameter		
in	inches		
lbs	pounds		
MD	measured depth		
OD	outside diameter		
Р	pressure		
ppg	pounds per gallon		
psi	pounds per square inch		
psi/ft	pounds per square inch per foot		
SICHP	shut-in casing head pressure		
SITHP	shut-in tubing head pressure		
TVD	true vertical depth		
V	volume		

Constant factors				
Constant factor pressure	0.052			
Constant factor capacity	1029.4			

Formulas

1. Pressure gradient (psi/ft)

fluid density (ppg) × 0.052

2. Fluid density (ppg)

hydrostatic pressure (psi) ÷ TVD (ft) ÷ 0.052

or

 $\frac{\text{hydrostatic pressure (psi)}}{\text{TVD (ft)} \times 0.052}$

3. Hydrostatic pressure (psi)

fluid density (ppg) \times 0.052 \times TVD (ft) or pressure gradient (psi/ft) \times TVD (ft)

4. Formation pressure (psi)

SITHP (psi) + hydrostatic column pressure to the top perforation (psi)

November 2023	EX-0039	Version 3.0	Page 1 of 2

Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document

5. Kill weight gradient (psi/ft)

(well fluid gradient (psi/ft) × TVD to point of circulation (ft)) + SITHP (psi) + overbalance* (psi) TVD to point of circulation (ft)

*Overbalance is variable and will be stated

6. Tubing capacity (bbl/ft)

 $\frac{\text{tubing ID}^2 \text{ (in)}}{1029.4}$

7. Annulus capacity (bbl/ft)

 $\frac{\text{casing ID}^2 \text{ (in) } - \text{ tubing OD}^2 \text{ (in)}}{1029.4}$

8. Volume (bbl)

capacity (bbl/ft) × MD (ft)

9. Time to pump/displace (minutes)

capacity (bb/ft) × MD (ft) pump rate (bbl/min)

or

volume (bbl) pump rate (bbl/min)

10. Area of a circle (in²)

0.785 × diameter² (in)

11. Force (lbs force)

area (in²) × applied pressure (psi)

12. New pump/circulating pressure (psi)

pump pressure (psi) × $\left(\frac{\text{new pump rate (bbl/min)}}{\text{old pump rate (bbl/min)}}\right)^2$

13. Basic gas law

 $P_1 \times V_1 = P_2 \times V_2$

$$P_{1} = \frac{P_{2} \times V_{2}}{V_{1}} \qquad \qquad V_{1} = \frac{P_{2} \times V_{2}}{P_{1}} \qquad \qquad P_{2} = \frac{P_{1} \times V_{1}}{V_{2}} \qquad \qquad V_{2} = \frac{P_{1} \times V_{1}}{P_{2}}$$

November 2023	EX-0039	Version 3.0	Page 2 of 2
		I	

Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document