Abbreviations

Abbreviation	Term
bbl	barrels (US)
$\mathrm{bbl} / \mathrm{ft}$	barrels (US) per foot
$\mathrm{bbl} / \mathrm{min}$	barrels (US) per minute
ft	feet
ID	inside diameter
in	inches
lbs	pounds
MD	measured depth
OD	outside diameter
P	pressure
ppg	pounds per gallon
psi	pounds per square inch
$\mathrm{psi} / \mathrm{ft}$	pounds per square inch per foot
SICHP	shut-in casing head pressure
SITHP	shut-in tubing head pressure
TVD	true vertical depth
V	volume

Constant factors	
Constant factor pressure	0.052
Constant factor capacity	1029.4

Formulas

1. Pressure gradient (psi/ft)

fluid density (ppg) $\times 0.052$

2. Fluid density (ppg)

hydrostatic pressure (psi) \div TVD (ft) $\div 0.052$
or
hydrostatic pressure (psi)
TVD (ft) $\times 0.052$

3. Hydrostatic pressure (psi)

fluid density $(\mathrm{ppg}) \times 0.052 \times$ TVD (ft) or pressure gradient $(\mathrm{psi} / \mathrm{ft}) \times$ TVD (ft)

4. Formation pressure (psi)

SITHP (psi) + hydrostatic column pressure to the top perforation (psi)

5. Kill weight gradient (psi/ft)

(well fluid gradient (psi/ft) × TVD to point of circulation (ft)) + SITHP (psi) + overbalance* (psi) TVD to point of circulation (ft)
*Overbalance is variable and will be stated
6. Tubing capacity (bbl/ft)
$\frac{\text { tubing } \mathrm{ID}^{2} \text { (in) }}{1029.4}$
7. Annulus capacity (bbl/ft)
$\frac{\text { casing } I D^{2} \text { (in) }- \text { tubing } O D^{2} \text { (in) }}{1029.4}$
8. Volume (bbl)
capacity (bbl/ft) \times MD (ft)
9. Time to pump/displace (minutes)
capacity (bb/ft) \times MD (ft)
pump rate (bbl/min)
or
$\frac{\text { volume }(\mathrm{bbl})}{\text { pump rate }(\mathrm{bbl} / \mathrm{min})}$

10. Area of a circle (in^{2})

$0.785 \times$ diameter 2 (in)
11. Force (lbs force)
area $\left(\mathrm{in}^{2}\right) \times$ applied pressure (psi)
12. New pump/circulating pressure (psi)
pump pressure $($ psi $) \times\left(\frac{\text { new pump rate }(\mathrm{bbl} / \mathrm{min})}{\text { old pump rate }(\mathrm{bbl} / \mathrm{min})}\right)^{2}$

13. Basic gas law

$P_{1} \times V_{1}=P_{2} \times V_{2}$
$P_{1}=\frac{P_{2} \times V_{2}}{V_{1}} \quad V_{1}=\frac{P_{2} \times V_{2}}{P_{1}} \quad P_{2}=\frac{P_{1} \times V_{1}}{V_{2}} \quad V_{2}=\frac{P_{1} \times V_{1}}{P_{2}}$

