

Well Intervention Pressure Control

Abbreviations used in this document

bar	=	Bar (Pressure)
bar/m	=	Bar per metre
BHP	=	Bottom hole pressure
kg/l	=	Kilogram per litre
l/m	=	Litre per metre
l/stroke	=	Litre per stoke
m	=	Metre
MD	=	Measured depth
TVD	=	True vertical depth
SIWHP	=	Shut-in well head pressure
0.0981	=	Constant factor

1. PRESSURE GRADIENT (bar/m)

Fluid density (kg/l) × 0.0981

2. FLUID DENSITY (kg/l)

Pressure (bar) ÷ TVD (m) ÷ 0.0981

or

Pressure (bar)
TVD (m) × 0.0981

3. HYDROSTATIC PRESSURE (bar)

Fluid density (kg/l) \times 0.0981 \times TVD (m)

or

Pressure gradient (bar/m) x TVD (m)

4. FORMATION PRESSURE (bar)

Hydrostatic pressure (bar) + SIWHP (bar)

5. TOTAL PRESSURE AT GIVEN DEPTH IN A SHUT IN WELLBORE (bar) (Where BHP = Formation pressure)

Hydrostatic pressure of gas (bar) + Hydrostatic pressure of oil (bar) + SIWHP (bar)

rebluary 2020 LA-0040 Version 2.0 Fage 1 or	February 2020	EX-0040	Version 2.0	Page 1 of 2
---	---------------	---------	-------------	-------------

6. TIME TO PUMP (minutes)

a. Tubing Tubing capacity (I/m) \times MD (m)

Pump rate (I/min)

b. Annulus Annulus capacity (l/m) × MD (m)

Pump rate (I/min)

7. STROKES TO DISPLACE (Strokes)

a. Tubing Tubing capacity (I/m) × MD (m) $\frac{\text{Tubing capacity (I/m)} \times \text{MD (m)}}{\text{Tubing capacity (I/m)}}$

Pump displacement (l/stroke)

b. Annulus Annulus Annulus Capacity (I/m) × MD (m)

Pump displacement (l/stroke)