

Section 1. Filled-in Kill Sheet Exercises - Gauge Problem Actions.

Gauge Problem Exercises are constructed from a completed kill sheet 'filled-in' with all relevant volume and pressure calculations.

Each question is based on the strokes, pump rate, drill pipe and casing gauge readings at a specific point in time during a well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drill pipe pressures will only be relevant to the action if -

- The casing and/or drill pipe pressures given in the question are below the expected pressures, or
- The casing and/or drill pipe pressures given in the question are 500 kPa or more above the expected pressures.
- Section 2. <u>Calculation Formula.</u>

Abbreviations used in this document				
BHP	=	Bottom Hole Pressure		
BOP	=	Blowout Preventer		
kg/m³	=	Kilogram per cubic metre		
kPa	=	KiloPascal (pressure)		
kPa/m	=	KiloPascal per metre		
kPa/hr	=	KiloPascal per hour		
LOT	=	Leak-off Test		
m	=	Metre		
m/hr	=	Metre per hour		
m/min	=	Metre per minute		
m ³	=	Cubic Metre		
m³/m	=	Cubic metres per metre		
m³/min	=	Cubic Metre per minute		
m ³ /stroke	=	Cubic Metre per stroke		
MAASP	=	Maximum Allowable annular Surface Pressure		
SICP	=	Shut in Casing Pressure		
SIDPP	=	Shut in Drill Pipe Pressure		
SPM	=	Strokes per minute		
TVD	=	True Vertical Depth		
0.00981	=	Constant factor		

1. HYDROSTATIC PRESSURE (kPa)

Mud Density $(kg/m^3) \times 0.00981 \times TVD (m)$

2. PRESSURE GRADIENT (kPa/m)

Mud Density (kg/m³) x 0.00981

August 2017	EX-0038	Version 1.0	Page 1 of 4
	4	*	

Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document

3. DRILLING MUD DENSITY (kg/m³)

Pressure (kPa) ÷ TVD (m) ÷ 0.00981

or

Pressure (kPa) TVD (m) x 0.00981

4. FORMATION PORE PRESSURE (kPa)

Hydrostatic Pressure in Drilling String (kPa) + SIDPP (kPa)

5. PUMP OUTPUT (m³/min)

Pump Displacement (m³/stroke) x Pump Rate (SPM)

6. ANNULAR VELOCITY (m/min)

Pump Output (m³/min) Annular Capacity (m³/m)

7. EQUIVALENT CIRCULATING DENSITY (kg/m³)

[Annular Pressure Loss (kPa) ÷ TVD (m) ÷ 0.00981] + Mud Density (kg/m³)

or

 $\frac{\text{Annular Pressure Loss (kPa)}}{\text{TVD (m) x 0.00981}} + \text{Mud Density (kg/m^3)}$

8. MUD DENSITY WITH TRIP MARGIN INCLUDED (kg/m³)

[Safety Margin (kPa) ÷ TVD (m) ÷ 0.00981] + Mud Density (kg/m³)

or

Safety Margin (kPa) TVD (m) x 0.00981 + Mud Density (kg/m³)

9. NEW PUMP PRESSURE (kPa) WITH NEW PUMP RATE approximate

Old Pump Pressure (kPa) x $\left(\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}}\right)^2$

10. NEW PUMP PRESSURE (bar) WITH NEW MUD DENSITY approximate

Old Pump Pressure (kPa) x New Mud Density (kg/m³) Old Mud Density (kg/m³)

August 2017	EX-0038	Version 1.0	Page 2 of 4	
Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document				

11. MAXIMUM ALLOWABLE FLUID DENSITY (kg/m³)

[Surface LOT Pressure (kPa) ÷ Shoe TVD (m) ÷ 0.00981] + LOT Mud Density (kg/m³)

or

 $\frac{\text{Surface LOT Pressure (kPa)}}{\text{Shoe TVD (m) x 0.00981}} + \text{LOT Mud Density (kg/m^3)}$

12. MAASP (kPa)

[Maximum Allowable Mud Density (kg/m³) - Current Mud Density (kg/m³)] x 0.00981 x Shoe TVD (m)

13. KILL MUD DENSITY (kg/m³)

[SIDPP (kPa) ÷ TVD (m) ÷ 0.00981) + Original Mud Density (kg/m³)

or

 $\frac{\text{SIDPP (kPa)}}{\text{TVD (m) x 0.00981}} + \text{Original Mud Density (kg/m^3)}$

14. INITIAL CIRCULATING PRESSURE (kPa)

Kill Rate Circulating Pressure (kPa) + SIDPP (kPa)

15. FINAL CIRCULATING PRESSURE (kPa)

 $\frac{\text{Kill Mud Density (kg/m^3)}}{\text{Original Mud Density (kg/m^3)}} \text{ x Kill Rate Circulating Pressure (kPa)}$

16. BARYTE REQUIRED TO INCREASE DRILLING MUD DENSITY (kg/m³)

 $\frac{[\text{Kill Mud Density } (\text{kg}/m^3) - \text{Original Mud Density } (\text{kg}/m^3)] \times 4200}{4200 - \text{Kill Mud Density } (\text{kg}/m^3)}$

17. GAS MIGRATION RATE (m/hr)

Rate of Increase in Surface Pressure (kPa/hr) Drilling Mud Density (kg/m³) x 0.00981

18. GAS LAWS

$$P_1 \times V_1 = P_2 \times V_2$$
 $P_2 = \frac{P_1 \times V_1}{V_2}$ $V_2 = \frac{P_1 \times V_1}{P_2}$

19. PRESSURE DROP PER METRE TRIPPING DRY PIPE (kPa/m)

<u>Drilling Mud Density (kg/ m^3) x 0.00981 x Metal Displacement (m^3 /m)</u> Riser or Casing Capacity (m^3 /m) - Metal Displacement (m^3 /m)

August 2017	EX-0038	Version 1.0	Page 3 of 4	
Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document				

20. PRESSURE DROP PER METRE TRIPPING WET PIPE (kPa/m)

 $\frac{\text{Drilling Mud Density (kg/m^3) x 0.00981 x Closed End Displacement (m^3/m)}{\text{Riser or Casing Capacity (m^3/m) - Closed End Displacement (m^3/m)}}$

21. LEVEL DROP PULLING REMAINING COLLARS OUT OF HOLE DRY (metre)

 $\frac{\text{Length of Collars } (m) \text{ x Metal Displacement } (m^3/\text{m})}{\text{Riser or Casing Capacity } (m^3/\text{m})}$

22. LEVEL DROP PULLING REMAINING COLLARS OUT OF HOLE WET (metre)

Length of Collars (m) x Closed End Displacement (m^3/m) Riser or Casing Capacity (m^3/m)

23. LENGTH OF TUBULARS TO PULL DRY BEFORE OVERBALANCE IS LOST (metre)

Overbalance (kPa) x [Riser or Casing Capacity (m^3/m) - Metal Displacement (m^3/m)] Drilling Mud Gradient (kPa/m) x Metal Displacement (m^3/m)

24. LENGTH OF TUBULARS TO PULL WET BEFORE OVERBALANCE IS LOST (metre)

Overbalance (kPa) x [Riser or Casing Capacity (m3/m) - Closed End Displacement (m3/m)] Drilling Mud Gradient (kPa/m) x Closed End Displacement (m3/m)

25. VOLUME TO BLEED OFF TO RESTORE BHP TO FORMATION PRESSURE (m³)

Increase in Surface Pressure (kPa) x Influx Volume (m^3) Formation Pressure (kPa) - Increase in Surface Pressure (kPa)

26. SLUG VOLUME (m³) FOR A GIVEN LENGTH OF DRY PIPE

Length of Dry Pipe (m) x Pipe Capacity (m^3/m) x Drilling Mud Density (kg/m^3) Slug Density (kg/m^3) - Drilling Fluid Density (kg/m^3)

27. PIT GAIN DUE TO SLUG U-TUBING (m³)

Slug Volume (m³) x $\left(\frac{\text{Slug Density } (\text{kg}/m^3)}{\text{Drilling Fluid Density } (\text{kg}/m^3)} - 1\right)$

28. RISER MARGIN (kg/m³)

 $\frac{[\text{Air Gap }(m) + \text{Water Depth }(m)] \times \text{Mud Density }(\text{kg}/m^3) - [\text{Water Depth }(m) \times \text{Sea Water Density }(\text{kg}/m^3)]}{\text{TVD }(m) - \text{Air Gap }(m) - \text{Water Depth }(m)}$

29. HYDROSTATIC PRESSURE LOSS IF CASING FLOAT FAILS (kPa)

 $\frac{\text{Mud Density (kg/m^3) x 0.00981 x Casing Capacity (m^3/m) x Unfilled Casing Height (m)}{\text{Casing Capacity (m^3/m) + Annular Capacity (m^3/m)}}$

August 2017	EX-0038	Version 1.0	Page 4 of 4
	L	*	

Printed copies are UNCONTROLLED: It is the user's responsibility to verify printed material against the controlled document