Abbreviations

Abbreviation	Term
cm	centimetres
ID	inside diameter
kg	kilogram
$\mathrm{kg} / \mathrm{cm}^{2}$	kilogram per centimetre squared
kg / l	kilogram per litre
$\mathrm{kg} / \mathrm{cm}^{2} / \mathrm{m}$	kilogram per centimetre squared per metre
l	litres
l / m	litres per metre
$\mathrm{l} / \mathrm{min}$	litres per minute
m	meters
MD	measured depth
mm	millimetres
OD	outside diameter
SICHP	shut-in casing head pressure
SITHP	shut-in tubing head pressure
TVD	true vertical depth
V	volume

Constant factors	
Constant factor pressure	0.0981
Constant factor capacity (using mm)	0.0007854
Constant factor capacity (using inches)	1.9735

Formulas

1. Pressure gradient $\left(\mathbf{k g} / \mathrm{cm}^{2} / \mathrm{m}\right)$

fluid density $(\mathrm{kg} / \mathrm{l}) \times 0.0981$
2. Fluid density (kg/l)
hydrostatic pressure $\left(\mathrm{kg} / \mathrm{cm}^{2}\right) \div$ TVD $(\mathrm{m}) \div 0.0981$
or
hydrostatic pressure $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
TVD (m) $\times 0.0981$
3. Hydrostatic pressure ($\mathrm{kg} / \mathrm{cm}^{2}$)
fluid density $(\mathrm{kg} / \mathrm{l}) \times 0.0981 \times$ TVD (m) or pressure gradient $\left(\mathrm{kg} / \mathrm{cm}^{2}\right) \times$ TVD (m)

4. Formation pressure $\left(\mathbf{k g} / \mathrm{cm}^{2}\right)$

SITHP $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)+$ hydrostatic column pressure to the top perforation $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$

5. Kill weight gradient $\left(\mathrm{kg} / \mathrm{cm}^{2} / \mathrm{m}\right)$

(well fluid gradient $\left(\mathrm{kg} / \mathrm{cm}^{2} / \mathrm{m}\right) \times$ TVD to point of circulation $\left.(\mathrm{m})\right)+$ SITHP $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)+$ overbalance $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
TVD to point of circulation (m)
*overbalance is variable and will be stated
6. Tubing capacity (I/m)
$\frac{\text { tubing } \mathrm{ID}^{2} \text { (inches) }}{1.9735}$ or tubing $\mathrm{ID}^{2}(\mathrm{~mm}) \times 0.0007854$
7. Annulus capacity ($1 / \mathrm{m}$)
$\frac{\text { casing } \mathrm{ID}^{2} \text { (inches) - tubing } \mathrm{OD}^{2} \text { (inches) }}{1.9735}$
or
(casing $\mathrm{ID}^{2}(\mathrm{~mm})$ - tubing $\mathrm{OD}^{2}(\mathrm{~mm})$) $\times 0.0007854$
8. Volume (I)
capacity $(1 / m) \times \mathrm{MD}(\mathrm{m})$
9. Time to pump/displace (minutes)
$\frac{\text { capacity }(1 / \mathrm{m}) \times \mathrm{MD}(\mathrm{m})}{\text { pump rate }(1 / \mathrm{min})}$ or $\frac{\text { volume }(\mathrm{I})}{\text { pump rate }(1 / \mathrm{min})}$

10. Area of a circle (cm^{2})

$0.785 \times$ diameter $^{2}(\mathrm{~cm})$

11. Force (kg force)

area $\left(\mathrm{cm}^{2}\right) \times$ applied pressure $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
12. New pump/circulating pressure ($\mathrm{kg} / \mathrm{cm}^{2}$)
pump pressure $\left(\mathrm{kg} / \mathrm{cm}^{2}\right) \times\left(\frac{\text { new pump rate }(1 / \mathrm{min})}{\text { old pump rate }(1 / \mathrm{min})}\right)^{2}$
13. Basic gas law
$P_{1} \times V_{1}=P_{2} \times V_{2}$
$P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}$
$V_{2}=\frac{P_{1} \times V_{1}}{P_{2}}$

