

Abbreviations

Abbreviation	Term
cm	centimetres
ID	inside diameter
kg	kilogram
kg/cm ²	kilogram per centimetre squared
kg/l	kilogram per litre
kg/cm ² /m	kilogram per centimetre squared per metre
1	litres
I/m	litres per metre
I/min	litres per minute
m	meters
MD	measured depth
mm	millimetres
OD	outside diameter
SICHP	shut-in casing head pressure
SITHP	shut-in tubing head pressure
TVD	true vertical depth
V	volume

Constant factors			
Constant factor pressure	0.0981		
Constant factor capacity (using mm)	0.0007854		
Constant factor capacity (using inches)	1.9735		

Formulas

1. Pressure gradient (kg/cm²/m)

fluid density (kg/l) x 0.0981

2. Fluid density (kg/l)

hydrostatic pressure (kg/cm²) ÷ TVD (m) ÷ 0.0981

or

hydrostatic pressure (kg/cm²)

TVD (m) × 0.0981

3. Hydrostatic pressure (kg/cm²)

fluid density (kg/l) \times 0.0981 \times TVD (m) **or** pressure gradient (kg/cm²) \times TVD (m)

4. Formation pressure (kg/cm²)

SITHP (kg/cm²) + hydrostatic column pressure to the top perforation (kg/cm²)

August 2019	EX-0098	Version 1.0	Page 1 of 2
, August Zo is	EX 0000	V C131011 1.0	I ago I ol Z

5. Kill weight gradient (kg/cm²/m)

(well fluid gradient (kg/cm²/m) × TVD to point of circulation (m)) + SITHP (kg/cm²) + overbalance* (kg/cm²)

TVD to point of circulation (m)

*overbalance is variable and will be stated

6. Tubing capacity (I/m)

$$\frac{\text{tubing ID}^2 \text{ (inches)}}{1.9735} \quad \text{or} \quad \text{tubing ID}^2 \text{ (mm)} \times 0.0007854$$

7. Annulus capacity (I/m)

or

(casing ID^2 (mm) - tubing OD^2 (mm)) × 0.0007854

8. Volume (I)

capacity $(I/m) \times MD (m)$

9. Time to pump/displace (minutes)

$$\frac{\text{capacity (I/m)} \times \text{MD (m)}}{\text{pump rate (I/min)}} \quad \text{or} \quad \frac{\text{volume (I)}}{\text{pump rate (I/min)}}$$

10. Area of a circle (cm²)

 $0.785 \times diameter^2$ (cm)

11. Force (kg force)

area (cm²) × applied pressure (kg/cm²)

12. New pump/circulating pressure (kg/cm²)

pump pressure (kg/cm²)
$$\times \left(\frac{\text{new pump rate (l/min)}}{\text{old pump rate (l/min)}}\right)^2$$

13. Basic gas law

$$P_1 \times V_1 = P_2 \times V_2$$
 $P_2 = \frac{P_1 \times V_1}{V_2}$ $V_2 = \frac{P_1 \times V_1}{P_2}$